Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion.

نویسندگان

  • Carrie D House
  • Charles J Vaske
  • Arnold M Schwartz
  • Vincent Obias
  • Bryan Frank
  • Truong Luu
  • Narine Sarvazyan
  • Rosalyn Irby
  • Robert L Strausberg
  • Tim G Hales
  • Joshua M Stuart
  • Norman H Lee
چکیده

Voltage-gated Na(+) channels (VGSC) have been implicated in the metastatic potential of human breast, prostate, and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Na(v)1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiologic recordings. Na(+) channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by small interfering RNAs (siRNA) specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, with strong Na(v)1.5 protein staining found in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process, and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

Functional expression of voltage-gated Na(+) channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression ...

متن کامل

Functional expression of the voltage-gated Na⁺-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells.

Various ion channels are expressed in human cancers where they are intimately involved in proliferation, angiogenesis, invasion and metastasis. Expression of functional voltage-gated Na(+) channels (Nav) is implicated in the metastatic potential of breast, prostate, lung and colon cancer cells. However, the cellular mechanisms that regulate Nav expression in cancer remain largely unknown. Growt...

متن کامل

Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.

Human jejunum smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs) express the SCN5A-encoded voltage-gated, mechanosensitive sodium channel NaV1.5. NaV1.5 contributes to small bowel excitability, and NaV1.5 inhibitor ranolazine produces constipation by an unknown mechanism. We aimed to determine the presence and molecular identity of Na(+) current in the human colon smooth muscle a...

متن کامل

Bioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion

Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...

متن کامل

Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1

Na(V)1.5 is a cardiac voltage-gated Na(+) channel αsubunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of Na(V)1.5 expression are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 17  شماره 

صفحات  -

تاریخ انتشار 2010